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The hydrodynamic problem is examined of how a fluid cascade, which is formed 
during the destruction of a reservoir, interacts with a protective barrier de- 
signed to withstand a rolling wave of fluid. A method is given to determine 
the height of the protective barrier as a function of the reservoir param- 
eters and the distance to its lateral surface. 

Cascades can occur when a fluid reservoir is partially or totally destroyed. Protec- 
tive structures in the form of earthen embankments, which are used in domestic practice, 
are designed for quasi-static containment of the escaping fluid; therefore, they cannot con- 
tain a dynamic cascade. Protective barriers can be used in order to increase the safety 
of reservoir fields near industrial sites and roads. The problem is that such barriers must 
withstand rolling waves of fluid formed when the resrvoir is destroyed. The height of each 
barrier must depend both on the reservoir height, and on the distance to it. A theory is 
presented to calculate the desired height, a method is given to solve the corresponding 
mathematical problems, the problems are solved, and the results are analyzed. 

i. Basic Equations. We examine a layer of fluid of depth h(x, y, t) moving along a 
plane at an angle ~ to the horizontal. The motion of the fluid is characterized by the 
depth-averaged velocity components ui, with i = i, 2, along the Ox- and Oy-axes. The fluid is 
assumed to be incompressible, therefore the continuity equations, integrated over the layer 
depth, are reduced to an equation relating this depth to the averaged components of the flow 
velocity: 

O__h_h + Ohuk _ O. (1 )  
Ot Oxk 

A r e p e a t e d  index  k i n d i c a t e s  summat ion f rom 1 t o  2. 

The basic factors, which determine the development of the fluid cascade, are the force 
of gravity and the inertia of the fluid. The viscosity and other rheological properties 
appear only at the final stage of the flow process and play practically no role in this prob- 
lem. Therefore, friction can be neglected, and the forces of motion are taken as the horizon- 
tal components of the hydrostatic pressure gradient, which is formed by the variation in 
the layer depth. Under these assumptions, we have 

Ou~ Ou i Oh g c o s ~ .  (2) + e 

In the one-dimensional case, which models the propagation of the fluid cascade when 
the walls of a flat channel or reservoir break, the defining Eqs. (i) and (2) are simplified: 

Ox~h Ox~hu Ou Ou Oh g c o s ~ .  (3) 
Ot + Ox 0 ,  --37 + U-~x + g Ox - -  

Here the superscript ~ is either 0 or i for plane or cylindrical symmetry. 

2. Problem Formulation. We now examine the following problem: An infinitely long chan- 
nel, filled with fluid to a constant depth H0, lies between two walls at x = • At time 
t = 0 the walls are destroyed instantaneously and the heretofore stagnant fluid flows away 
on both sides. Protective barriers are placed at distances (L - R) to the right and left 
of the channel walls, that is, at the points x = • The protective barriers are designed 
to prevent fluid from penetrating into the region Ix[ > L. The question is asked, how high 
must the protective barriers be, so that the fluid cascade cannot move over the barriers? 
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This question can be answered by solving the following boundary problem: 

Oh + Ohu =0,  Ohu O ( _~__) 
0-7- a--;-- 0--7- + + = o; 

(4) 

h(x, 0 )=  / H~ for 0~-~x~R,  u(x, 0 ) = 0 ,  u(0, t ) = u ( L ,  t ) = 0 .  
10 for ~<x~L; 

Here the height H b of the protective barriers is found as the maximum height of the fluid at 
points x = ~L. 

The other problem, for a cylindrical reservoir, is formulated in an analogous manner. 
A cylindrical reservoir of radius R and height H0, initially filled with fluid, is instan- 
taneously destroyed. Here a wave flows out to a protective barrier at a distance (L - R) 
from the edge of the reservoir. Here we must find the barrier height Hb, which is defined 
as the maximum of the function h(L, t). The solution to this problem is found from the follow- 
ing formulation: 

Oh 1 Orhu Ou Ou Oh 
Ot § = 0; § u + g = 0; r Or - ~  Or Or 

h(r, 0)=Ho for 0 ~ r ~ R ;  h(r, 0)--0 for_ R < r ~ L ;  (5) 

u(r, 0)=  0; u(0, t ) =  . (L,  t )= O. 

3. Method of Solution. These problems are solved with the aid of Godunov's method 
[i, 2] and the use of the solutions to the problem of the destruction of an arbitrary dis- 
continuity in the system of quasi-linear hyperbolic equations (I) and (2). If these equations 
are integrated over the area of a cell xj ~ x ~ xj+ I and tm-1 s t ~ t m (~x = xj+ I - xj and 

At = t m - tm_1), then the values of hi+i/2 and uj+i/2, averaged over the interval (xj, 
xj+1), are obtained from the system of recurrence relations 

At m "1 m - -  i - - .  h:+i/2 = hi+i/2 + [hu] :  +1 , 
Ax 

m l . n z - -  1 m - -  1 h~+l/2ui+1/~ = n]+l/2u]+1/2 -k [hu ~ q- gh=/2]~ +1 

(6) 
At 
Ax 
indicates the difference of in which the superscript indicates the time, and the symbol [ ] 

the enclosed quantity at the nodes indicated by the upper and lower indices. 

The system (6) could be used to calculate the desired functions at the time t m from 
their known values at time tm_1; however, the system includes unknown parameter values h 
and u at the cell boundaries. According to Godunov, these values are taken from the solution 
to the problem of the decay of an arbitrary discontinuity in the system of Eqs. (i) and 
(2). This discontinuity arises from the interaction of two flows with constant but differ- 
ent values hj,i/2 and uj_i/2 to the left of the contact boundary and hj+i/2 and uj+i/2 to 

the right. This problem is self-similar, and its solution at x = xj gives the desired values 
of hj and uj on the boundary of each cell. 

4. Decay of an Arbitrary Discontinuity. Gladyshev [3] examined this problem in its 
general form for open waterways. We show that in the case of a rectangular channel, this 
problem has 41 different solutions, depending on the ratio of the parameters to the right 
and the left of the separation boundary. Because of the self-similarity, these solutions 
consist of simple fast (R +) and slow (R-) waves which satisfy the equations 

R + : ~ = u + V ~ ,  u - -2V~=cons t ;  

R - : ~ = u - - V ~ ,  u + 2 V ~ = c o n s t ,  

where ~ = x / t  i s  t he  s e l f - s i m i l a r i t y  v a r i a b l e .  The problem s o l u t i o n  a l s o  c o n t a i n s  shock 
f a s t  (S+) and slow (S- )  waves ( h y d r a u l i c  d { s c o n t i n u i t i e s ) ,  s t a t e s  f o r  which (h and u) s a t i s f y  
t h e  equa t ion  

(u - -  uo) ~ - 2ho 
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Fig. i. Diagram for the decay of an arbitrary 
discontinuity. 

where h 0 and u 0 are the flow parameters ahead of the shock wave. The difference between 
fast and slow shock waves is in their propagation velocities, which is determined by progres- 
sion conditions [4]. 

Figure 1 shows the plane of the variables hj_i/2 and uj_i/2, broken into regions for 

fixed values of hj+i/2 and uj+i/2. In each region the solution is the same for h and u. 

(Because of Galileo's principle, there is no loss of generality if we take uj+i/2 = 0.) 

The solution to the problem is composed of various combinations of fast waves (S + and R +) 
and slow waves (S- and R-), which follow each other, and are separated by different regions 
of constant parameters. The wave combinations which comprise the solution in each region 
are shown in Fig. I. Here Rmax + represents the fast simple wave of maximum intensity. 

The order of solving the problem is as follows. We start with the given parameters 
r n - - i  i n - - 1  r n - - 1  m - -  I 

h j - l / 2 ,  u/-~/2 and h/+1/2 , uj+l/2 f r o m  t h e  (m - 1 ) - t h  t i m e  s l i c e  and d e t e r m i n e  t h e  c o m b i n a t i o n  o f  
waves  which  c o r r e s p o n d  t o  t h e  s o l u t i o n  f o r  t h e  d e c a y  o f  an a r b i t r a r y  d i s c o n t i n u i t y .  Then 
we compute  t h e  v a l u e  o f  t h e  s e l f - s i m i l a r i t y  v a r i a b l e  $, which  g i v e s  t h e  p o s i t i o n  o f  e a c h  

;:1--  I 
of the waves. The values of hj and uj, which correspond to $ ~----t~f§ , determine the val- 

ue of the required parameters on the boundary of the (j - l)-th and j-th cells. In an analo- 
gous manner, the required variables hj+ I and uj+ I on the boundaries of the j-th and (j + l)- 

r n - - i  m - - I  r n _  1 r n - - 1  t h  c e l l s  a r e  computed  f rom t h e  v a l u e s  o f  h/§ uj§ and  hi+3/o . ,  uf+s/2 . F i n a l l y ,  Eqs .  (6 )  

a r e  u s e d  t o  compute  t h e  v a l u e s  o f  t h e  h y d r o d y n a m i c  p a r a m e t e r s  h j + l / 2  TM and u j + z / 2  TM f o r  t h e  
following time slice. 

5. Results of the Calculations. Figure 2 shows the results for the instantaneous de- 
struction of a cylindrical reservoir of radius i0 m and height H 0 = i0 m. The reservoir 
is surrounded by a protective barrier of radius L = 20 m. The figure shows curves of typical 
shapes of the rolling fluid wave at sequential moments of time. The basic stages of the 
process can be followed clearly: a tongue of fluid propagates towards the barrier and the 
fluid level in the reservoir decreases; the cascade impacts the protective barrier and throws 
fluid sharply upwards along it; and a reverse wave of fluid, reflected from the barrier, 
propagates towards the center of the reservoir, which by now has a deep depression. The 
maximum rise of the liquid H b at the barrier is 5.3 m in this case. Namely, at this height 
the protective barrier prevents fluid from penetrating beyond it. 

The shape of the rolling fluid wave has an analogous form for all other cases, both 
planar and radial. 

During the calculations, we varied the only dimensionless parameter L/R, which defines 
the location of the barrier with respect to the reservoir. Figure 3 shows the dependence 
of the dimensionless barrier height Hb/H 0 sufficient to contain the moving fluid behind the 
barrier as a function of the dimensionless distance L/R. From the curves it can be seen 
that for a plane of symmetry (v = 0), the protective barrier should be much higher than for 
the case of cylindrical symmetry (v = i). Thus, for example, if the barrier is at one radius 
distance from the edge of the reservoir (L/R = 2), its height should be 1.01 in the planar 
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Fig. 2. Profile of the fluid cascade for L/R = 2 and a = 0: curves 1-4 
are constructed with an interval AT = 0.45 sec; curves 5-10 with an inter- 
val of At = 0.9 sec. 
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Protective barrier height vs. the distance from the edge 
of the reservoir: i) v = 0; 2) v = 1. 

case, but only 0.53 in the cylindrical case. If the distance from the barrier to the edge 
of the reservoir is three reservoir radii (L/R = 4), then Hb/H 0 = 0.64 in the planar case 
but 0.15 in the cylindrical case. Finally, for cylindrical reservoirs, a barrier at a distance 
of 5 times the radius from the edge of the reservoir is almost not needed at all, and an 
earthen embankment is completely sufficient. At the same time, the height of'a protective 
barrier should never be less than half the height of the reservoir in the plane case. 

Other factors which affect the fluid motion were also varied during the calculations. 
Friction was considered by including hydraulic losses on the right side of Eq. (2) [5]. 
However, it turned out that the results hardly changed, even in the case of significant re- 
sistance. As it was assumed a priori, the gravitational forces are much larger than the 

friction forces. 

We also analyzed the effect of the cascade propagating at an angle e to the horizontal. 
Figure 4 shows the profiles of a cascade at various times for the case when the region between 
the reservoir and the barrier has a rise defined by tg e = 0.2. While the shape of the cascade 
depends on ~, it turned out that the barrier height was practically unchanged in this case, 
so the results are valid for both a rise (~ > 0) and a drop (~ < 0). 

The computational algorithm described above also was used to solve the two-dimensional 
problem of (i) and (2), which models the partial destruction of the reservoir. The problem 
is posed as follows: At time t = 0, a vertical opening with the same height as the reservoir 
and of width b is formed in the wall of the reservoir. The fluid, which has been stationary 
until this time, starts to flow through the opening, such that its rolling wave moves towards 
a protective barrier, established at some distance from the edge of the reservoir. Here 
it is assumed that the fluid level in the reservoir drops as the fluid flows out. It turns 
out that the computational algorithm based on Godunov's method is also valid in this case. 

The results are as follows. If the cascade flows through a vertical plane of symmetry, 
then the resultant profile is analogous to that in Fig. 2; however, the curves of the propa- 
gating fluid cascade are completely different than in the one-dimensional case: the fluid 
is observed to spread in a direction perpendicular to the plane of symmetry. The height of 
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Fig. 4. Profile of a fluid cascade for L/R = 2 and tg~ = 0.2; 
curves 1-7 are constructed for a time interval At = 0.45 sec. 

the fluid rise when it impacts the protective barrier is less than in the axisymmetric case. 
Thus, for example, for the case analogous to that shown in Fig. 2 (H 0 = i0 m, L - R = i0 m, 
and b = 2 m), the maximum fluid rise is 2.1 m instead of 5.3 m for the axisynunetric case. 
However, this number is much larger than would be expected from existing predictions. 

Conclusions. Results of the investigations show that in practically all cases the height 
of the protective barrier should be much higher than computed earlier, and the currently 
used earthen embankments for reservoirs near industrial sites and roads cannot protect them 
from the danger that arises when the reservoir breaks. 

NOTATION 

h, depth of the fluid layer; Uk, velocity component of the fluid rolling wave; g, accel- 
eration due to gravity; ai, angle formed by the velocity vector and the direction of gravity; 
H0, initial height of the fluid layer in the reservoir; L, distance of the protective barrier 
from the center of the reservoir; Hb, barrier height; b, width of the opening for partial de- 
struction of the reservoir; R + and R-, fast and slow simple waves; S + and S-, fast and slow 
shock waves (hydraulic jumps); $, self-similarity coordinate; x, spatial coordinate; t, time; 
m and j, calculational cell numbers with respect to time and space. 
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